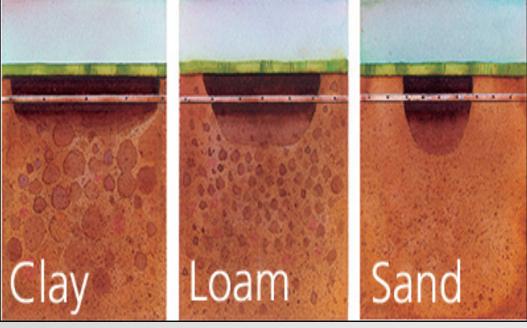

DRIPLINE INSTALLATION


INSTRUCTOR: JOHN RAFFIANI

HANDOUT

IF YOU ARE UNSURE OF THE SOIL TEXTURE DON'T BE AFRAID TO USE THE "RIBBON AND FEEL" METHOD

WATER MOVEMENT IN SOILS

Inches of AW per Inch At Field Capacity

Soil Texture Class	Available Water (in./in.)	Basic Intake Rate (in./in.)
Clay	.17	.10
Silty Clay	.17	.15
Clay Loam	.18	.20
Loam	.17	.35
Sandy Loam	.12	.40
Loamy Sand	.08	.50
Sand	.06	.60

(NETAFIMUSA)

(WATERMOTION.COM)

QUICK QUIZ

IF YOUR SOIL IS CLAY LOAM AT FIELD CAPACITY HOW MUCH WATER IS AVAILABLE TO A SHRUB WITH 8 INCH ROOTS?

ANSWER:		Soil Texture Class	Available Water (in./in.)	Basic Intake Rate (in./in.)
		Clay	.17	.10
<u> </u>		Silty Clay	.17	.15
AW =		Clay Loam	.18	.20
O INICLI DO	OTC V 0 10 INIC /INI	Loam	.17	.35
O INCH KU	DOTS X 0.18 INS./IN.	Sandy Loam	.12	.40
-1.44 INIC	CHES OF WATER	Loamy Sand	.08	.50
-1.44 IINC	LIES OF WATER	Sand	.06	.60
AVAILAB	LE TO THE PLANT			

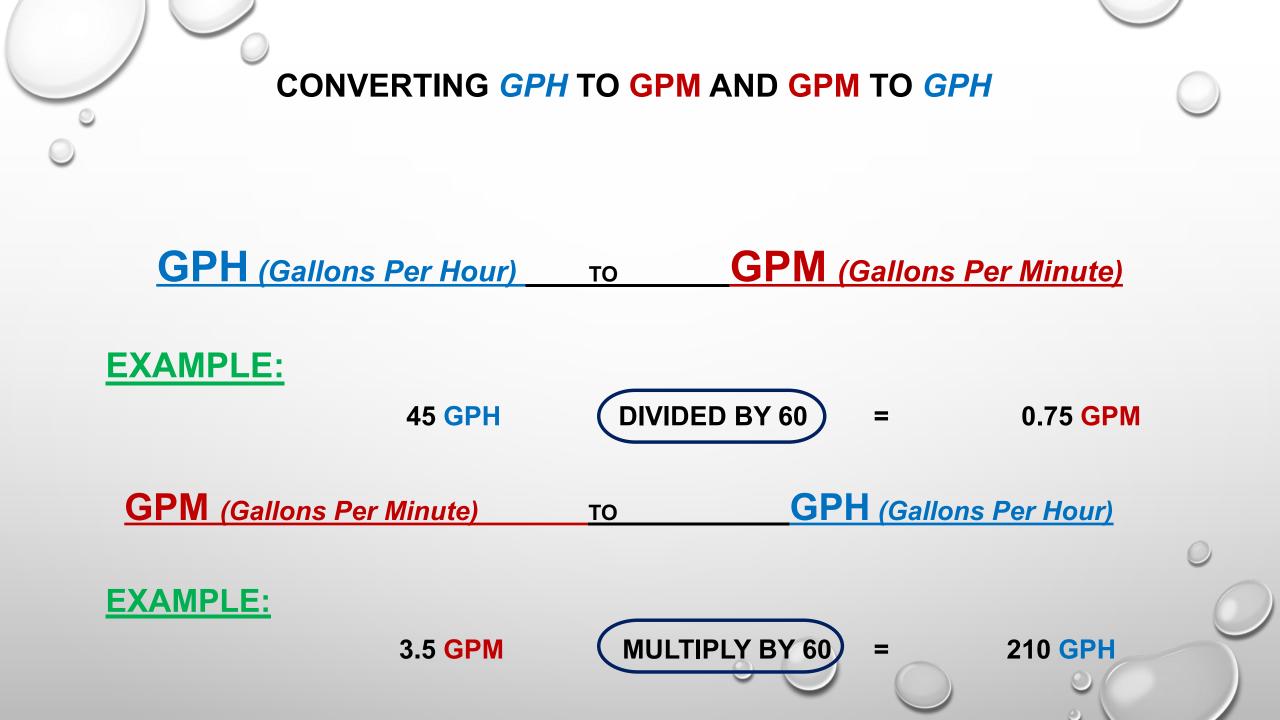
WATERING TO THE ROOT ZONE - QUICK QUIZ AW = FC - PWP

Back to our chart showing AW per inch of 0.18 for clay loam:
As the soil approaches PWP (not MAD) it will need to
replace the prior 8 inch root zone's 1.44 inches
lost to ET. If your drip zone has a PR of
0.45 ins./hr. How long would you need to run
the zone to make up the 1.44 inches of water?

ANSWER:

- **1.44 / 0.45 = 3.2 x 60 = 192 minutes.** Assume an *IR* of 0.20 ins./hr. for clay loam.
- What would be your maximum run time before runoff? How many run cycles?
- Answer: 0.20 IR / 0.45 PR x 60 = 26 minutes. Number of cycles = 192m / 26m = 7 cycles minimum *
- * Chances are this plant is a goner. Not enough time unless runoff/ponding is not a problem for this emergency.

Soil Texture Class	Available Water (in./in.)	Basic Intake Rate (in./in.)
Clay	.17	.10
Silty Clay	.17	.15
Clay Loam	.18	.20
Loam	.17	.35
Sandy Loam	.12	.40
Loamy Sand	.08	.50
Sand	.06	.60


CONTROL KIT COMPONENTS

- LOW FLOW SOLENOID VALVES 0.2 GPM MINIMUM (12 GPH)
- PRESSURE REDUCER (30-50 PSI)
- MESH FILTER (200 MESH = 75 MICRONS)

THE HIGHER THE MESH # THE SMALLER THE MICRONS AND THE SMALLER THE PARTICLE ALLOWED TO PASS THROUGH TO THE EMITTERS

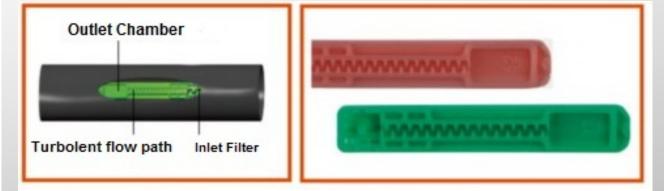
WHEN DESIGNING A DRIPLINE INSTALLATION THINK IN GALLONS PER HOUR CONVERT TO GPM WHEN CHOOSING HEADER SIZE AND CONTROL KITS

100 GPH = 1.67 GPM 1000 GPH = 16.7 GPM

17MM DRIPLINE

DRIPLINE (IMAGES COURTESY OF NETAFIM AND RAIN BIRD)

Cupron


copper oxide

The Reliable and durable sub-surface

OOK FOA

OPPER-COLO

1/4" LANDSCAPE DRIP LINE (COURTESY OF RAIN BIRD)

- 6" AND 12" SPACING
- 100' COIL LENGTHS
- 10 TO 40 PSI OPERATING RANGE
- EMITTER FLOW RATE: 0.8 GPH AT 30 PSI
- NON PRESSURE COMPENSATING EMITTERS

Maximum Length of Run (feet)									
Emitter Spacing	Maximum Length of Run	Flow per Ft. @ 15 psi							
6"	19 feet	1 GPH/ft.							
12"	33 feet	0.5 GPH/ft							

PRACTICE PROBLEM 1 DETERMINE GPM USED FOR 14 CIRCULAR PLANTERS

$> \frac{1}{4}$ INCH DRIPLINE 0.8 GPH EMITTERS @ 30 PSI - 6 INCH SPACINGS

► DIAMETER OF DRIPLINE RING IN PLANTER - 16 INCHES

SOLUTION:

- CIRCUMFERENCE IS 2 x 3.14159 (π 8 ins. = 50.27 inches
- 50.27 INCHES / 6 INCH EMITTER SPACING = 8 EMITTERS PER PLANTER
- 8 EMITTERS X 0.8 GPH = 6.4 GPH PER PLANTER
- 6.4 GPH / 60 = 0.11 GPM PER PLANTER
- 0.11 GPM x 14 PLANTERS = 1.54 GPM

BONUS QUIZ:

Prior to installing the dripline for your client they tell you they use 6.0 gallons every 3 days to keep the plants happy and don't want to lose the plants while on vacation. What is the run time per cycle every 3rd day?

```
6.0 GALLONS / 1.54 GPM \approx 4 MINUTES
```

DRIPLINE TUBING FROM VARIOUS MANUFACTURERS

- EMITTER GPH DISCHARGE RATES OF 0.26, 0.33, 0.40, 0.53, 0.60, 0.77, 0.80, 0.90 AND 1.16
- EMITTER SPACINGS 6 INCHES, 12 INCHES, 18 INCHES AND 24 INCHES
- EMITTERS WITH CHECK VALVES OPTIONAL FOR SLOPES
- OPTIONAL COPPER USED TO STOP ROOT INTRUSION

(OR AN EMBEDDED HERBICIDE SUCH AS ROOTGUARD)

DRIPLINE EMITTERS WITH INTEGRATED CHECK VALVES

ADVANTAGES OF A CHECK VALVE:

- 3.5 PSI CHECK VALVE BUILT IN TO EVERY EMITTER
- UP TO 8' ELEVATION CHANGE
- NECESSARY FOR SLOPED AREAS
- HELPS PREVENT VACUUM ACTION & GRIT SUCTION
- EVEN WATERING TOP TO BOTTOM
- NO DRAINAGE AT LOW POINTS
- DRIPLINE REMAINS CHARGED AFTER IRRIGATION CYCLE

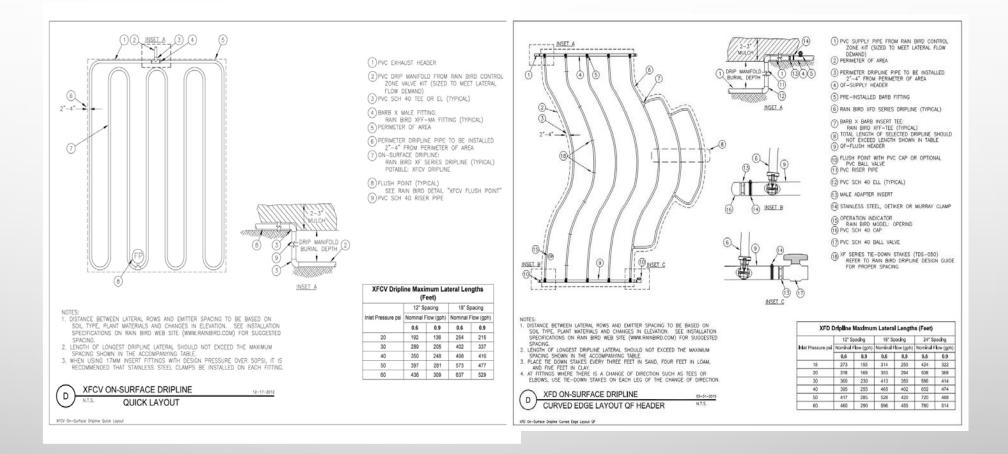
DISADVANTAGES:

➢ FREEZE DAMAGE IF NOT

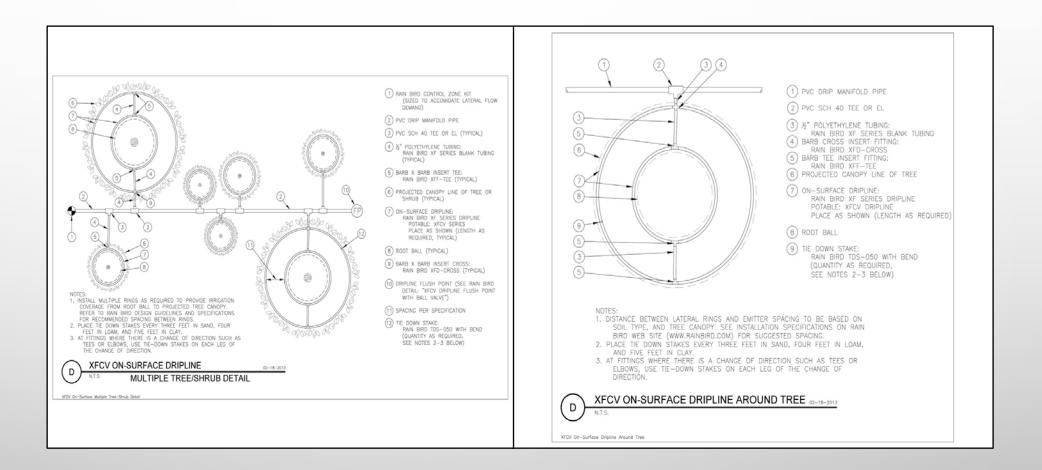
WINTERIZED CORRECTLY*

* COMPRESSED AIR INPUT @ 40 PSI OR LESS. WAIT UNTIL EMITTERS ARE "HISSING" THEN <u>BRIEFLY</u> OPEN FLUSH VALVE AT LOW POINT FOR FINAL WATER DISCHARGE (MY METHOD)

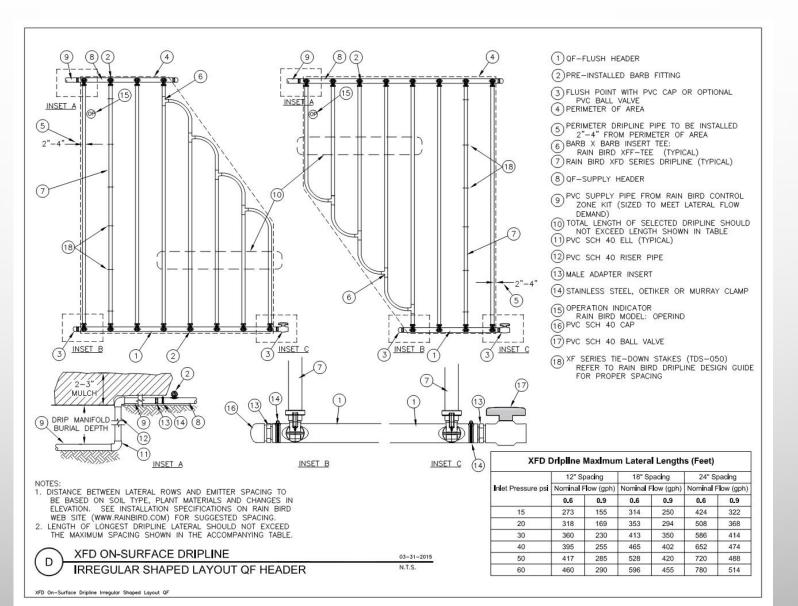
KEY POINTS TO REMEMBER FOR MOST SITUATIONS


> PLANTS NEED WATER ON AT LEAST TWO SIDES

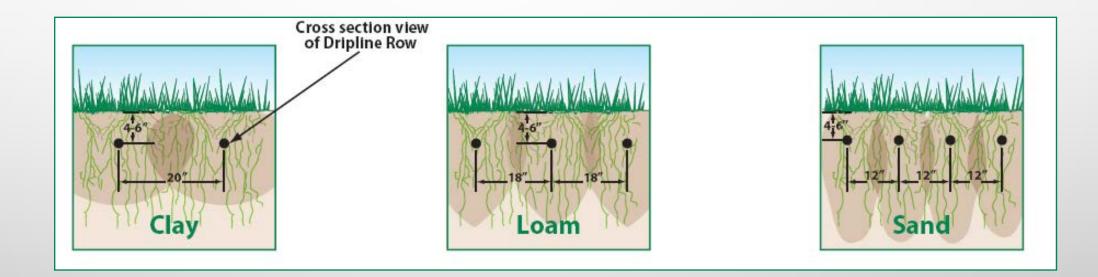
- ► USE THE SAME EMITTER SPACING THROUGHOUT THE DRIP ZONE
- \succ The closer the emitters and laterals are the higher the PR
- ➢ IF USED FOR THE GROW-IN PHASE ON NEW LANDSCAPES KEEP IN MIND THE TYPE OF PLANT AND HOW IT'S MATURE SIZE MIGHT AFFECT YOUR INSTALLATION
- INCREASE OR DECREASE EMITTER SPACINGS AND LATERAL LINE SPACING ACCORDING TO SOIL TEXTURE, GENERAL SOIL CONDITIONS AND SLOPE
- > TYPE OF PLANTS AT TOP AND BOTTOM OF SLOPED BEDS AND THEIR SPACINGS
- LOCATE DRIPLINES AN APPROPRIATE DISTANCE AWAY FROM HARDSCAPES TO AVOID DAMAGE FROM ROUTINE MAINTENANCE
- BE WARY OF DRIPLINES CLOSER THAN TWO FEET TO BUILDINGS. CHECK ADJACENT BASEMENT WALLS FOR ANY DAMPNESS ISSUES PRIOR TO DESIGNING
- > ASCERTAIN AREA FACTORS THAT COULD COMPROMISE THE FUTURE FUNCTIONAL EFFICIENCY OF THE DRIPLINES (SUCH AS RODENTS, FOOT TRAFFIC, CHILDREN PLAYING)


WATER MOVEMENT ON STEEP SLOPES WITHIN THE SOIL PROFILE CAN BE SIGNIFICANT

- CONSIDER A SEPARATE ZONE FOR THE BOTTOM 1/3 OF THE SLOPE
- ALWAYS RUN DRIPLINE LATERALS PERPENDICULAR (ACROSS) THE SLOPE WHENEVER POSSIBLE
- WHEN USING A SINGLE ZONE WITH SLOPES GREATER THAN 3% INCREASE THE DRIPLINE SPACING BY 25% IN THE BOTTOM 1/3 OF THE ZONE


PLANTING BED LAYOUTS CAN TAKE ANY FORM

CIRCULAR VS. LATERAL DESIGN GENERALLY HIGHER PR NUMBER OF CIRCLES CAN INCREASE TO WATER LARGER SPECIMENS USE BLANK TUBING TO SEND WATER TO INDIVIDUAL PLANTS



SUBSURFACE DESIGN PATTERNS – TURF NOTE: PATTERNS MUST BE CONSISTENT IN TURF APPLICAIONS

ALWAYS CONSIDER AERATION WHEN DESIGNING DRIPLINE INSTALLATIONS FOR TURF

• TO AVOID AERATION DAMAGE TURF DRIPLINE SHOULD BE BURIED A MINIMUM OF 4"

BASIC DESIGN SPECS BY SOIL TEXTURE

Guidelines	Clay	Loam	Sand
Emitter Flow Rate	0.4 GPH	0.6 GPH	0.9GPH
Emitter Spacing	18"	18"	12"
Lateral Tubing Spacing	18"-24"	18"-24"	16"-20"
Maximum Burial Depth	6"	6"	6"
Application Rate — in/hr Basic Soil Intake Rate-in/hr	.2921 0.10	.4235 0.35	1.0887 0.60
Minutes to Apply 0.25 inches of Water	52 - 71	36 - 43	14 - 17

YOU GET THE CALL-YOUR CLIENT HAS HAD ENOUGH OF LOOKING AT THE NEIGHBOR'S UNKEMPT YARD

- THEY WANT TO INSTALL FENCING BUT IT
 ONLY RISES 6 FEET AND THEY NEED 8 TO
 BLOCK THE VIEW
- YOU RECOMMEND 5 FOOT EMERALD ARBORVITAE FOR THE JOB – 80 FEET OF THEM SPACED 3 FEET APART PLANTED IN A 42 INCH WIDE BERM OF SANDY LOAM TOPSOIL
- YOU TELL THE CLIENT THE BMP FOR FAST GROWTH WOULD BE TO ADD A SURFACE DRIPLINE ZONE COVERED BY 2 INCHES OF MULCH
- YOU CHOOSE 0.6 GPH EMITTERS AT 12" SPACINGS-A TOTAL LENGTH OF 160 FEET.

\mathbf{KC} = SPECIES FACTOR \mathbf{X} DENSITY FACTOR \mathbf{X} MICROCLIMATE FACTOR

TABLE 4-2: ESTIMATED SPECIES FACTORS				TABLE 4-3: ESTIMATI	TABLE 4-4: ESTIMATED MICROCLIMATE FACTORS						
Plant Type	Low	Average	High	Plant Type	Low	Average	High			_	
Trees	0.2	0.5	0.9	Trees	0.5	1.0	1.3	Plant Type	Low	Average	High
Shrubs	0.2	0.5	0.7	Shrubs	0.5	1.0	1.1	Trees	0.5	1.0	1.4
Ground covers	0.2	0.5	0.7	Ground covers	0.5	1.0	1.1	Shrubs	0.5	1.0	1.3
Mixed trees, shrubs, ground covers	0.2	0.5	0.9	Mixed trees, shrubs, ground cover	0.6	1.1	1.3	Ground covers	0.5	1.0	1.2
								Mixed trees, shrubs, ground cover	0.5	1.0	1.4

You plant in July in Summit NJ – your monthly **PET** is 4.46 inches / 31 = 0.144 inches per day. Your (Kc) is 1.64 x 0.144 inches per day = 0.24 inches per day

USE THE CHART TO FIND THE *PR* THAT MATCHES YOUR CHOICE OF EMITTER SPACING, GPH AND ROW SPACING

• OUR ARBORVITAE DRIPLINE ZONE **PR** IS 0.83 INCHES PER HOUR BY CHART

TABLE 5: APPLICATION RATE

	Lateral Row Spacing (in Inches)												
Emitter Spacing	12″	13″	14″	15″	16″	17″	18″	19″	20″	22″	24″		
	0.4 GPH Emitter Flow (Inches per hour)												
12″	0.67	0.62	0.58	0.54	0.51	0.48	0.45	0.43	0.40	0.37	0.34		
18″	0.45	0.41	0.39	0.36	0.34	0.32	0.30	0.28	0.27	0.25	0.22		
24″	0.34	0.31	0.29	0.27	0.25	0.24	0.22	0.21	0.20	0.18	0.17		
				0.6 GI	PH Emit	ter Flov	w (Inch	es per l	nour)				
12″	0.96	0.89	0.83	0.77	0.72	0.68	0.64	0.61	0.58	0.53	0.48		
18″	0.64	0.59	0.55	0.51	0.48	0.45	0.43	0.41	0.39	0.35	0.32		
24″	0.48	0.44	0.41	0.39	0.36	0.34	0.32	0.30	0.29	0.26	0.24		
			0.	9 GPH	Emitter	Flow (Inches	per hou	ır)				
12″	1.44	1.33	1.24	1.16	1.08	1.02	0.96	0.91	0.87	0.79	0.72		
18″	0.96	0.89	0.83	0.77	0.72	0.68	0.64	0.61	0.58	0.53	0.48		
24″	0.72	0.67	0.62	0.58	0.54	0.51	0.48	0.46	0.43	0.39	0.36		

FAST FACTORING OF DRIP LINE <u>GROSS APPLICATION RATE</u> USING GPM AND ROW SPACING YIELDS ABOUT THE SAME RESULT

AR = (0.963 X QT) / ST

• WHERE:

AR = GROSS APPLICATION RATE IN INCHES/HOUR

QT = TUBING FLOW RATE IN GPM/100 FEET

ST = TUBING SPACING IN FEET

• EXAMPLE:

160 FEET 0.6 GPH EMITTERS EVERY 12 INCHES WITH ROW SPACING 14 INCHES APART

0.6 GPH DRIP LINE / 60 = .01 GPM X 100 = 1.0 GPM (BY CHART 1.02 GPM)

0.963 X 1.02 / 1.17 FT. (14" / 12")

1.54 / 1.17 = 0.84 IN./HR.

SCHEDULING ZONE RUN TIMES AND FREQUENCY

✓ THE NEW ARBORVITAE NEED 0.24 INCHES PER DAY DURING THEIR ESTABLISHMENT PERIOD (PWR)

✓ THE NEW DRIPLINE ZONE APPLIES WATER AT AN AVERAGE PR OF 0.83 INS./HR.

THE FORMULA FOR DETERMINING RUN TIMES:

$$Run Time = \frac{PWR}{PR} \times 60$$

OUR EXAMPLE: **18 MINUTES** \approx 0.24 / 0.83 X 60

(ALWAYS ROUND UP WHEN

IRRIGATING)

MAXIMUM TIME TO RUNOFF

• VARIOUS CHARTS NOTE **SANDY LOAM SOIL INTAKE RATES** FROM **0.4 TO 1.02 INS./HR.** SINCE SANDY LOAM DRAINS RAPIDLY LET'S USE THE AVERAGE OF THE SCALE **0.71 INS./HR.** FOR A MAXIMUM RUN TIME BEFORE RUNOFF OCCURS:

Cycle Run Time =
$$\frac{IR}{PR} \ge 60$$

OUR EXAMPLE: **51 MINUTES** = $0.71 / 0.83 \times 60$

THUS OUR RUN TIME OF 18 MINUTES IS GOOD

FINAL PROGRAM

- 18 MINUTES OF RUN TIME APPLIES 0.24 INCHES OF WATER (DAILY PWR)
- DUE TO RAPID SOIL PERCOLATION BREAK THIS INTO TWO 9 MINUTE CYCLES AT LEAST TWO HOURS APART (KEEP TO THE HEAVY SIDE FOR ESTABLISHMENT) EVERY DAY
- WATER EVERY DAY FROM JULY TO EARLY AUGUST UNTIL PLANTS START ROOTING (4-6 WEEKS)
- REDUCE CROP FACTOR FROM "TREE" TO "SHRUB" (KC = 1.00) AND RECALCULATE TO AUGUST PET

OF 3.80 / 31 = 0.123 INCHES PER DAY:

NEW RUN TIME = 9 MINUTES DAILY $(0.123/0.83 \times 60)$

AFTER THAT WATER A TOTAL OF 9 MINUTES ONCE EVERY DAY AND READJUST FOR

SEPTEMBER'S PET AND REPEAT STEPS TO DETERMINE SEPTEMBER PROGRAM

NEXT SEASON: JULY-DAILY PET OF 0.144 INCHES PER DAY X 7 = 1.00 IN./WK. WATER 4 DAYS/WEEK FOR 72 MINUTES TOTAL (1.00/0.83 X 60) AS FOLLOWS:

72 MINUTES/4 DAYS = 18 MINUTES TOTAL RUN TIME FOUR DAYS PER WEEK

TWO CYCLES 9 MINUTES EACH AT LEAST 2 HOURS APART ON THE FOUR CHOSEN DAYS

TECHLINE CV® Flow per 100 Feet

Emitter	ter 0.26 GPH Emitter		0.4 GPH	Emitter	0.6 GPH	Emitter	0.9 GPH Emitter		
Spacing	GPH	GPM	GPH	GPM	GPH	GPM	GPH	GPM	
12"	26.4	0.44	42.3	0.71	60.8	1.01	92.5	1.54	
18″	17.6	0.29	28.2	0.47	40.5	0.68	61.6	1.03	
24″	13.2	0.22	21.2	0.35	30.4	0.51	46.2	0.77	

ADDITIONAL CHARTS

MAXIMUM PRECIPITATION RATES (inches per hour)

	0% to 5	% Slope	5% to 8%	% Slope	8% to 12	% Slope	12% to 20% Slope	
Soil Texture	Covered	Bare	Covered	Bare	Covered	Bare	Covered	Bare
Coarse Sandy Soil	2.00	2.00	2.00	1.50	1.50	1.00	1.00	1.00
Coarse Sandy Soil Over Compact Sub Soil	1.75	1.50	1.25	1.00	1.00	0.75	0.75	0.40
Light Sandy Loam	1.75	1.00	1.25	0.80	1.00	0.60	0.75	0.40
Light Sandy Loam Over Compact Sub Soil	1.25	0.75	1.00	0.50	0.75	0.40	0.50	0.30
Uniform Silt Loam	1.00	0.50	0.80	0.40	0.60	0.30	0.40	0.20
Silt Loam Over Compact Sub Soil	0.60	0.30	0.50	0.25	0.40	0.15	0.30	0.10
Heavy Clay / Clay Loam	0.20	0.15	0.15	0.10	0.12	0.08	0.10	0.06

Note: The above average values are for reference purposes. Data may vary with respect to actual soil and site conditions. Data from USDA.

TECHLINE CV® Maximum Length of a Single Lateral (feet)

Emitter Spacing				1	2"		18"				24"	
Emitter Flow Rate (GPH)		iPH)	0.26	0.4	0.6	0.9	0.26	0.4	0.6	0.9	0.6	0.9
		20	331	242	190	144	468	344	270	204	342	260
		25	413	302	238	180	584	429	338	257	430	326
	e	30	471	345	272	206	668	491	387	293	492	374
	Pressure (psi)	35	518	380	299	227	737	540	426	323	542	412
	Pre (psi	40	559	410	223	244	794	584	459	348	584	444
	Inlet	45	594	436	343	260	845	620	489	371	622	472
	-	50	626	459	361	274	890	654	515	390	656	498
		55	655	480	378	287	932	684	539	410	686	522
		60	681	500	393	298	969	713	561	426	716	544

0